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lenses, i.e., # positive lenses and # negative lenses. There
are therefore 27 lenses, all of which have random lateral
displacements with an rms value of ¢.

For the case of positive lenses spaced confocally and
equal power negative lenses (¢ =03=1), then

) = 2.820/7.

In the case of no negative lenses («¢=0, 8=1), then

VD = 14lov/n.

In the first case the expected deviation of the output
beam is twice that of the second case, but there are
twice as many lenses to align in the first case. If this
increase in lateral sensitivity were due only to the in-
creased number of lenses, one would expect an increase
of only +/2. The additional factor of A2 is due to the
reduced focusing properties of the line.

SUMMARY

As expected, the addition of the negative lenses re-
duces the ability of the transmission line to control the
light beam. However, if the power of the negative lenses
is kept equal to or less than the power of the positive
lenses, the reduction in guiding ability is not too severe.

For example, consider a transmission line of positive
lenses spaced confocally (8=1) and add negative lenses
of the same power (a=1):

1) The spot size at the positive lens is increased by
1.315.

2) The allowed bending radius is increased by 2.5.

3) The critical bending period is increased by 1.5.

4) The sensitivity to random lateral lens displace-
ments is increased by 2.
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Mode Conversion in Tapered Waveguides At
and Near Cutoff

C. C. H. TANG

Abstract—The coupling coefficient between the TE; mode and
the TM,; mode in tapered circular waveguides is derived, and at
cutoff frequency it tends to approach an infinity of the order of 0~/4
It is surprising to discover that the corresponding coupling coefficient
between the TE;; mode and the TM;; mode in tapered rectangular
waveguides approaches instead a zero of the order of 0'/* at cutoff
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frequency. Accordingly, for the modes concerned, the choice of using
circular or square waveguides as tapers for transition at and near
cutoff frequency is significant in reducing mode conversion level. At
and near cutoff frequency a “synthesized” square taper is better in
that it is shorter than a “synthesized” circular taper for the same
mode conversion levels. On the other hand, for frequencies far away
from cutoff the choice is insignificant.

Design procedures for “synthesized” waveguide tapers at and
near cutoff are presented, and the results of measurements are in
agreement with the theoretical calculations.
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INTRODUCTION
MODE CONVERSION in a tapered waveguide

capable of multimode propagation had been

analyzed [1]-[3] previously, but these analyses
treated only the cases where the converted modes are
also far away from cutoff, as the converting or exciting
mode is. The present paper treats the case where the
converted mode is at and near cutoff. The basic ap-
proach of the problem is the same as that shown in
Tang [3], but the coupling coefficient between the con-
verting mode and the converted mode has to be in a
general form appropriate for all cases including at, near,
and far away from cutoff.

Instead of treating the general problem of mode
conversion at and near cutoff in tapered multimode
waveguides, we shall study a specific example for pur-
poses of illustration. The waveguide taper changing
from a radius g, to radius @, in length 7 is shown in Fig. 1.

Fig. 1.

A circular waveguide taper.

Assuming first that the dominant TEy mode alone is
excited in a multimode circular waveguide of radius a;,
we want to know what and how strong are the converted
modes in the waveguide of radius a,, provided the taper-
ing is gentle. Calculation shows that the first few modes
possible for propagation in a multimode waveguide
taper appear in the following order for increasing radius:
TEu, TM01, TE21, TMn and TEol, TE31, TMgl, TE41,
TE12, TMoz, TM31, TE51, TEzg, TM12 and TE02, etc. If
the excitation is TEy mode alone and the taper is axially
straight and circularly symmetric, we can show by
means of the orthogonality relation that the only con-
verted modes will be of the TMy, or (and) TE,, type,
depending on the actual size of the waveguide taper
used. These converted modes will be present in the fol-
lowing order as the taper radius a increases: TMyy, TEys,
TMy, TEy;, TMu, ete. For simplicity we shall assume
that the waveguide size is such that the only possible
converted mode is the TMy mode. In the next section
the coupling coefficient between the TE;; mode and the
TMyu mode of circular waveguides will be briefly de-
rived; in addition, the corresponding coupling coeffi-
cient between the TE;, mode and the TMi; mode of
rectangular waveguides will be derived also. It will be
shown that at and near cutoff frequency the choice of
using circular or rectangular waveguides as tapers is
significant in reducing mode conversion level.

ForMULATION

The coupling coefficient between the TE;; mode and
the TMyu mode in circular waveguide can be obtained
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by converting Maxwell’s equations with appropriate
boundary conditions into generalized telegraphist’s
equations as shown by Schelkunoff [4]. The field con-
figuration of the TEy; and TMy; modes at any cross sec-
tion in circular waveguides can be represented by

B _—
E, = p” V(z)J1(pp) sin 8 + BV (z)J1' (gp) sin @
fo]

B _
Ey = BV (2)J{ (pp) cos 8 + — V(2)J1(gp) cos 8
qp

Y

. Bg - .
E, = j — I(2)J1(gp) sin §
we

B_
H, = — BI(z)J{(pp) cos§ — — I(3)J1(gp) cos b
qp

<

B —_
Hy = ;— I(z)J1(pp) sin 8 + BI(z)J, (gp) sin 8
o

Bp
H,=—j o V(2)J1(pp) cos @ (1)
where
e J1(po) :Iz}
B2= | 7200 d
fo {[ (p0)]* + l: ” pdp
= fafl2(1>p)pdp,
- _ @ ) . J1(gp) 7
B —fo {[Jl(qp)] +[ " ]}pdp
= f aJ12(9p)pdp, (2)

and

k
p(z) = L (kyy is the first root of J¢'),
a(z)

k .
q(z) = L (k11 1s the first root Jy).
a(z)

Prime (") denotes the derivative with respect to its argu-
ment, and barred letters denote quantities related to
TM mode. The boundary condition along the tapered
section is, at p=a,

E.(a,3) = — E,(a, 2) (;l; : 3)
Z

Substituting (1) into Maxwell’s equations in cylindrical
coordinates with due care exercised on differentiation
processes because of the boundary condition along the
tapered section, and performing the integration from
p=0 to p=a and from 8 =0 to =27 on these equations
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with appropriate normalizing factors and weighting dd —
functions, we obtain the following differential equations dz v(2)4 + (24
in telegraphist’s form: i
dI v 1 1 de 2 1 da_ = =74 — (x4 (8)
AL /2 S — — S dz
dZ jw,u. kllz —1 a dZ (k112 — 1)1/?‘ a dz

where

av _ 1 1 da
— = —joul — ——— — —V Z 1 1 da

g > —1 a ds () = |:_: _—] —— (9)
d.j 1 da VA (knz - 1) a d3
i JeeV + % d= ! is the coupling coefficient between the TE; and TMy
iV - g 5 L g forward waves. Substituting (7) into (9), we obtain the
v l_j o _av _ L aa v () general coupling coefficient in the following explicit
dz e a dz (kb — DY2 g dz form:

1 U2 1 da
§-<Z) - p‘l 1/2 g? 1/2 —; 2—2,:
-2y )
w’ep wlep
1 1 da
= . " - (10)
(k12 — )12 I:( k112?\02>< /€112}\02>:|1/4 ds
@t — ——— g2 — =
4 4q®

where where A is the free-space wavelength. For frequencies

vi(z) = p2(z) — wleu, and 72(2) = ¢*(z) — wreu. (5)
For the lossless case,

vy =jB8, and 7 =jB. (59
From (4) we notice that the coupling of the TN mode
due to the presence of the TEy mode is of the voltage
type only, whereas the coupling of the TEy; mode due
to the presence of the TMy; mode is of the current type
only.

If we let A and R represent the amplitudes of the for-
ward and reflected waves, respectively, the following
equations are always true:

V = +Z(A + R), V=vVZA+ R
——1—(A—R) I=—(1-0R (6)
- VZ ’ N
where
26 = 2 and Z() = 1 %)
v(z Jwe

Substitution of (6) into (4) results in a new set of four
coupled differential equations in forward waves and
reflected waves. If-the taper is gentle, we can assume
reflections and multiple reflections to be negligibly
small, and obtain the following pair of coupled differen-
tial equations in forward-wave amplitudes:

far away from cutoff, (10) reduces to the simple form

1 1 da

(_k;ﬁ — 1)“2. e dz

¢(@) = (11)
For frequencies at cutoff we notice from (10) that there
is an apparent zero in the denominator, and the coupling
coefficient appears to be infinite. On the other hand,
(10) is obviously integrable in the cutoff region along
the taper since the zero in the denominator is of the
order of QU4

From the point of view of reducing reflections and
mode conversions, tapers should be designed with pro-
files having zero derivatives at the ends. The stipulation
of zero slope at the ends of the taper also makes it possi-
ble to utilize the results presented in Tang [3], namely,
(29), which is the solution of (8) here, and Fig. 2 in
that reference. A choice of appropriate » and p; from
Fig. 2 of Tang [3] for a prescribed mode conversion
level, together with the following pair of parametric
equations, should give us the proper profile of the de-
sired “optimum?” taper:

f rds = f " (20) dp,
0 0

(12)

i.e.,

1 f @ da
(k2 — 1)'2J oy |:( . k112>\02>(
a® —

Bufho\ L4
=
42 472

4 ™
- f C, sin™ <~) dp, (129
0 41
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o d 0 d e d
z=f —fif —p=f — L, @
o T o AS o 3(8—8)
ie.,
A s ad
I S , (13)

T 0 kIIZ}\02 1/2 k112>\02 1/2
a? — —|a—

[( 4n? > < 4r? ) jl
where C, is a constant to be determined by the bound-
ary conditions: at

a=gay, p=0, and a = ay, p = p1. (14)
Equations (12/) and (13’) have to be integrated numeri-
cally.

We now turn to a brief derivation of the coupling
coefficient between the TE;y mode and the TMy; mode
of rectangular or square waveguides. These two modes
are the counterparts of the TEy and TMy modes in
circular waveguides, and therefore a detailed study of
the coupling coefficient between these two modes in
rectangular or square waveguide may throw some new
light on the problem of mode conversion at cutoff. The
field configuration of the TE;; and TMy, modes at any
rectangular cross section, as shown in Fig. 2, can be
represented by

T 2y
H,= —CI(z) cos—~ -+ CI(3) cos — cos—;
a
b Tx | 2wy
H, = — CI(2) sin— sin ——
2a a b
a klo wr
H,=C~— —V(3) sin—
T Jwp a
b Ty 27y
E, = — CV/(z) sin ~— sin ——
2a a b

T 2wy
E, = CV(2) cos— — CV(2) cos — cos e

b _ kot T 2wy
E. ——C—I(z) cos — sin —— (15)
2r  jwe a b
where
r 1 2
C = - — =
¢ ki Vab
. 2r 1 2 .
= 6
b klz \/ab ( )
and
i = o/ (05) + (i) =m0
mnl3) = - = Rmn .
) b (2) 17
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Tig. 2. A rectangular waveguide taper.

The boundary condition along the tapered section is

1 ( da
Ez - = Ex _>)
2 dz
£ 1 <E db>
‘ 2 ' dz)’ -

Substituting (15) into Maxwell’s equations in rectangu-
lar coordinates with due care exercised on differentia-
tion processes, and performing the integration over the
cross section on these equations with appropriate nor-
malizing factors, we obtain the following equations:

2
I
H

H

a
2
b
o (18)

dI T2 1 dC 1 1 da
ST (L Ly,
dz Jou C dz 2 a dz
av ] 1 4dC 1 1 da C 1 db_
RO gy (i |/ M
dz C dz 2 a dz C b dz
d1 1 b 1 da 1 db\_
—=—]weV——abC2~—~—~+~—>I
dz 4 4a? a dz b ds
1 _ db
——aCC—1T
2 dz
av I 1 b2 1 da 1 db\ _
— = ——I+—abC°<~ —_— —+ — *)V (19)
dz Jwe 4a® a dz b dz
where
I'2(2) = k1%(z) — wleu, and T%(z) = k12¥(z) — weu. (20)
Note that in (19)
C1db 1 _db 242z 1 db
— —=—aC—=— — — (21)
C b dz 2 dz km b d

as expected. Inspection of (19) reveals that the nature
of the coupling mechanism is just the reverse of that of
the circular waveguide case; i.e., the coupling of the
TM;i; mode due to the presence of the TE;y mode is of
the current type only, whereas the coupling of the TE,
mode due to the presence of the TMy; mode is of the
voltage type only.

For gentle tapers reflections can be neglected and (19)
can be converted into a pair of coupled equations in for-
ward waves F and F as

aF =

7 = —TEF+{{>&F
¥

dF -

— = TEF ¢ @F (22)
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where
V2r /K 1 db
"(5) = — e — 23
g-(Z) k12 K b2 dZ ( )
and
] r
K@) = 2™ and K= 2 g
I'(z) Jwe

Note that {’ is proportional to db/dz only, and inde-
pendent of da/dz for coupling between the TE; mode
and the TM1, mode. Combining (23), (24), and (17), we
obtain the coupling coefficient explicitly as

V2a

ol )]

£ =

4 -+ bP)N2 ) V4 1 db
.|:1_£u]} - — . (25)
(2ab)? b dz
For a square guide a =5, (25) reduces to
2 Ao\?2
a{= = —r b2 - _—
= \/10{[ (2)]
S} V¢ 1 db
(- s w
2 . b? ds

For frequencies far away from cutoff, (25) and (26) re-
duce to, respectively,

V2a db
R 0
and
() = e = 9)
V10 b dz

At cutoff it is clear from (25) or (26) that the coupling
coefficient {’ vanishes to a zero of the order of 0% in
contrast to the circular waveguide case where the cou-
pling coefficient ¢ of (10) at cutoff becomes infinite of
the order of 0174,

From a purely theoretical point of view, we can con-
clude now that in order to reduce the mode conversion
levels in tapers near and at cutoff frequency region, it is
more desirable to use for the modes concerned rectangu-
lar or square waveguides than circular waveguides. On
the other hand, when the tapers are for frequencies far
away from cutoff, the choice between the circular wave-
guide and the rectangular waveguide becomes insignifi-
cant as evidenced by the fact that the magnitude of {’
of (28) is about the same as that of { of (11).

DESIGNS AND EXPERIMENTS

The following theoretical requirements and experi-
mental setup are given: A pure TE;, mode is success-
fully excited in a square (1.79 in) waveguide, and the
receiving end waveguide is required to be circular
(2.812 in ID). Design a transition section such that the
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conversion of the TMy mode is at least 43 dB less than
the TEy mode in the circular waveguide within the fre-
quency range from 5725 Mc/s to 6425 Mc/s.

The required transition section is square (1.79 in) at
one end and circular (2.812 in ID) at the other end. De-
pending upon the choice of design scheme, the major
part of the transition section can be in either circular
waveguide taper or square waveguide taper. We shall
design first a circular taper and then a square taper for
purposes of comparison.

Circular Tapers

Calculation shows that the TMy mode at f= 6425
Mc/s and f=5925 Mc/s does not propagate until the
diameter of the circular waveguide is 2.242 in and 2.432
in, respectively. Accordingly, the circular taper should
be designed at f=6425 NMc/s with 2¢:=2.242 in and
2a,=2.812 in. To complete the transition section from
1.79 in square to 2.812 in ID circular, we need another
section with 1.79 in square at one end to 2.242 in ID
circular at the other end in addition to the 2¢,=2.242 in
to 2a,=2.812 in circular taper. Since the TMy mode at
f=06425 Mc/s cannot propagate in the section from 1.79
in square to 2.242 in ID circular, the design of such a
section does not involve the TMy; mode conversion but
does affect the reflection level of the dominant rnode.
To simplify the fabrication processes, this section can
be made from a mandrel formed simply by cutting a
linear conical taper with 2¢1=2.242 in and 2a,
=+/2%1.79 in and slicing off four flat sides with the
slope (2.242-1.79 in)2! such that one end is a circle of
2.242 in diameter and the other end is a square of 1.79
in side. The dominant mode reflection from this section
of length /=12 in is about —45 dB by measurements.

The exact profile of the circular taper from 2a;=2.242
in to 2a,=2.812 in is obtained by solving the pair of
parametric equations (12’) and (13’). The choice of
appropriate # and p; from Fig. 2 of Tang [3] deserves
some detailed discussion. From Tang [3] we under-
stand that the parameter p, for a gentle taper is ap-
proximately the integral (over the length of the taper)
of one half the difference of the phase constants of the
two modes involved in conversion. For frequencies far
away from cutoff, p: increases for decreasing frequen-
cies, and accordingly a taper is always designed for the
highest frequency in the band so that its performance
at lower frequencies is always better than the pre-
scribed. For frequencies at and near cutoff, however, ps
decreases for decreasing frequencies, and therefore mode
conversion increases with decreasing frequencies. Our
present prescription also requires that the taper be de-
signed for the highest frequency in the band, and conse-
quently we have to know approximately the value of px
for the lowest frequency in the band. On the other hand,
we cannot obtain the value of p; for the lowest frequency
until the required profile is provided. Clearly, we have
to employ some “cut-and-try” processes in choosing the
values of # and p; for the highest frequency at a mode
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conversion level much less than the prescribed level.
With the chosen values of # and p; we can obtain the
profile and therefore the approximate value of p; for the
lowest frequency. If this value of p, for the lowest fre-
quency meets the prescribed requirements, we have
succeeded in designing the taper. If not, we have to try
another set of values for # and p; for the highest fre-
quency. By choosing #=23 and p;=15.5 for the highest
frequency at about —358 dB mode conversion, we suc-
ceed in obtaining a taper having about —43 dB mode
conversion at the lowest frequency. The length of the
taper by this “synthesis” method turns out to be about
20 in, and the profile is monotonically increasing in a
“sophisticated” manner.

For purposes of experimental comparison, another
circular taper from 2¢:=2.242 in to 2a,=2.812 in is
fabricated with the following “simple” profile:

(29)

T 3
a = a; + (a2 — a;) sin? (—-« —>
2 1

where [ is arbitrarily taken to be 23 in. Note this profile
also has zero initial derivative only at the design fre-
quency (i.e., the highest frequency in the band).

The results of the measurements by Klinger’s
method [5] are tabulated in Table I. Obviously, the 23-
in taper of “simple” profile does not meet the require-
ment by about 14 dB in the high-frequency region. The
fact that the measured mode conversion levels of the
“synthesized” circular taper are flat over the band is
mainly due to the accuracy limit of the measuring equip-
ment.

TABLE I
TM MopeE CONVERSION LEVEL IN DB
20 in Circular A
Frequency Taper by 23 1%‘;(1:12(;u1ar 11 in “Linear”
(Mc/s) “Sﬁ//[r’latt}}ll%s&s” Adasin® (/2 /1) Square Taper
5925 —43 —43 —43
6000 —43 —43 —42
6100 —43 —43 —43
6200 —43 —43 —43
6300 —43 —41 —43
6400 —43 —33 —41
6425 —43 —29 —41

Square Tapers

Since (26) shows that the coupling coefficient at cutoff
frequency is zero and mode conversion is very small near
cutoff, it seems unnecessary to utilize the same “synthe-
sis” method used earlier to obtain a “sophisticated”
profile. In addition, the fabrication of a square taper
with “sophisticated” profile is much more difficult. For
purposes of experimental comparison with the circular
tapers just studied, we design the simplest square taper
with a linear slope. In order to reduce reflections with a
taper of zero end derivatives, a short parabolic “filet”
is fitted at each end, and the square taper (1.79 in to
2.812 in) has the following profile with an arbitrarily
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chosen length of 15 in:

b = 1.79 4+ 0.037853*
1.79 4 0.03785(2z — 1)

{from Oto 1in

{from 1to13in &

I

[ from 13 to 15 in

b =179+ 1.022 l:l — ~1— (z — 15)2] (30)
54

Note that the “effective length” of the taper is only
about 11 in, since the mode conversion at 6425 Nc/s
does not start until b becomes larger than 2.0552 in. To
complete the required taper we need another transition
from 2.812 in square to 2.812 in ID circular. This transi-
tion can be made from a mandrel formed by cutting a
linear conical taper with 2¢:=2.812 in and 2a.=+/2
X 2.812 in, and slicing off four flat sides parallel to the
axis such that one end is a circle of 2.812 in ID and the
other end is a 2.812 in square. The dominant mode re-
flections from such a transition of 12 in length are mea-
sured to be less than —45 dB. Since the sides of this
transition are parallel to the axis, the mode conversion
due to this transition should be zero, according to (26)
or (10), since da/dz=db/dz=0. Because of the gradual
flaring at the circular part of corners, this transition
may vield comparatively small or negligible TN y; mode
conversion. The results of measurements are also tabu-
lated in Table I. Comparison shows that the “un-
sophisticated” “linear” square taper is indeed a strong
contender to the “synthesized” circular taper. If the
square taper were “synthesized” its mode conversion
would be lower than that of the “synthesized” circular
taper of the same length.

CONCLUSIONS

The coupling coefficient between the TEy; mode and
the T\l mode in circular waveguide is derived, and at
cutoft frequency it tends to approach an infinity of the
order of 0~'/4 The corresponding coupling coefficient
between the TE;; mode and the TMj; mode in rectangu-
lar waveguide is also derived, and at cutoff frequency it
tends to approach a zero of the order of 04 Accord-
ingly, for the modes concerned it is theoretically advan-
tageous to design square tapers at and near cutoff fre-
quency in order to reduce mode conversion levels in
shorter lengths. On the other hand, the fabrication of a
square taper with “sophisticated” profile is much more
difficult than the fabrication of a circular taper. Design
procedures for a circular taper at and near cutoff are
shown, and the experimental results are in agreement
with the theoretical calculations. For frequency far
away from cutoff, the choice between the circular taper
and the rectangular taper is insignificant.

In circular waveguide tapers the coupling of the
TMu mode due to the presence of the TEy; mode is of
the voltage type, whereas in rectangular or square wave-
guide tapers the coupling of the TMi; mode due to the
presence of the TE:, mode is of the current type. The
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difference between the coupling mechanisms in these
two cases could be responsible for the drastically dif-
ferent behaviors at the cutoff, but no convincing phys-
ical interpretation can yet be offered.
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Computation of the Performance of the Abrupt
Junction Varactor Doubler

ALFRED I. GRAYZEL, MEMBER, TEEE

Abstract—A computational procedure is given for the solution of
the large signal abrupt junction varactor doubler as the input fre-
quency is varied, given the available power of the source and the
source and load impedances. The basic equations are presented in a
convenient form. The steps in the procedure are then outlined, and
an example is given to demonstrate their use.

SYMBOLS

Ey=efficiency of doubler
E,=Thévenin equivalent voltage of input source
mi=normalized elastance coefficient at input
frequency
me=normalized elastance coefficient at output
frequency
P =parammeter defined by (8)
P.,=available power of source
Pi,=input power to doubler
Prowm =normalization power=(Vz+¢)2/Rg
QOmin =charge on varactor when S(¢) =0
gs =charge on varactor due to contact potential
R,=real part of Thévenin equivalent source im-
pedance
R.=real part of (Zs-+Rg+.So/2jw)/RS
Rg=series resistance of the varactor
So=average value of S{¢)
S(#) =instantaneous value of elastance
Smax =value of S(¢) at breakdown
Smin=minimum value of S(¢)
1A (2my/my)?
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V' =breakdown voltage
Ve=direct voltage across varactor
VSWR = voltage standing wave ratio
X, ,=imaginary part of Thévenin equivalent
source impedance
v A my(w./w)cos 0
Zw =1mpedance looking into terminals b’ (Fig. 1)
Z,=voltage across diode at input frequency di-
vided by current at input frequency
Zy=1load impedance
w=input frequency
w. = cutoff frequency of varactor =Sy,.x/Rs
6 =phase angle by which input current leads
output current
pao =reflection coefficient at terminals aa’ (Fig. 4)
pw =reflection coefficient at terminals b0’ (Fig. 4)
¢ = contact potential
Y4 =angle at which S(?) is a maximum
Yp=angle at which S{¢) 1s 2 minimum

INTRODUCTION
I l AVING DESIGNED a doubler circuit quite

often, one would like to know its efficiency and

output power as the input frequency is varied
about the design frequency. In this paper we therefore
consider the following problem: Given an abrupt junc-
tion varactor doubler circuit whose load and source
impedances have already been chosen, driven by a sinus-
oidal source whose frequency we are free to vary and
whose available power is a known function of frequency,
what is the output power and efficiency as a function
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