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lenses, i.e., n positive lenses and n negative lenses. There

are therefore 2n lenses, all of which have random lateral

displacements with an rms value of o..

For the case of positive lenses spaced confocally and

equal power negative lenses (a= (3= 1), then

< (7.+,2) = 2.82u~~.

In the case of no negative lenses (a== O, (3= 1), then

~ (Vn+,’) = 1.41aV’i.

In the first case the expected deviation of the output

beam is twice that of the second case, but there are

twice as many lenses to align in the first case. If this

increase in lateral sensitivity were clue only to the in-

creased number of lenses, one would expect an increase

of only @. The additional factor of ~1 is due to the

reduced focusing properties of the line.

SUMMARY

As expected, the addition of the ne,gative lenses re-

duces the ability of the transmission line to control the

light beam. However, if the power of the negative lenses

is kept equal to or less than the power of the positive

lenses, the reduction in guiding ability is not too severe.

For example, consider a transmission

lenses spaced confocally (/3=1) and add

of the same power (a= 1):

1)

2)

3)

4)

The spot size at the positive lens

1.315.

line of positive

negative lenses

is increased by

The allowed bending radius is increased by 2.5.

The critical bending period is increased by 1.5.

The sensitivity to random lateral lens displace-

ments is increased by 2.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]
L12]

[13]

[14]

[15]

[16]

[171

[18]

VOL. MTT-14, NO. 5 MAY, 1966

REFERENCES

D. Marcuse and S. E. Miller, “Analysis of a tubular gas lens, ”
Bell Sys. Tech. J., vol. 43, pp. 1759-1782, July 1964.
D. Marcuse, “Theory of a thermal gradient gas lens, ” IEEE
Transactions on Microwave Theory and Techniques, vol. MTT-13,
pp. 734–739, November 1965.
W. H. Steier, “Measurements on a thermal gradient gas lens, ”
IEEE Transactions on .Microwane Theory and Techn@er, vol.
MTT-13, pp. 740-748, November 1965.
A. C. Beck, “Thermal gas lens measurements, ” Bell Sys. Tech. J.,
VO]. 43, pp. 1818–1820Y ]UIY 1964.
D. Marc use, ‘T’ropertles of periodic gas lenses, ” BeU Sys. Tech.
~., vol. 44, pp. 2083-2116, November 1965.
S. E. Miller, “Alternating-~[adient focusing a.rrd related proper-
ties of convergent lens focusing,” BeZl Sys. Tech. J., vol. 43, pp.
1741–1758,. July 1964.
H. Kogelmk, “Imaging of optical modes—Resonators with in-
ternal lenses, ” Bell .Sys. Tech. J., vol. 44, pp. 4,55–494, March
1965.
LV. IV. Rigrod, “The optical ring resonator, ” Bell Sys. Ttxk. J.,
vol. 44, pp. 907–916, May–June 1965.
G. D. Boyd and J. P. Gordon, “Confocal multimode resonator
for millimeter through optical wavelength masers,” Bell Sys.
Tech. 1., vol. 40, pp. 489–508, March 1961.
S. E. Miller, “Directional control in light-wave guidance, ” BeU
Sys. Tech. J., vol. 43, pp. 1727-1741, July 1964.
H. E. Rowe, private communication, iNovember, 1964.
P. K. Tien, J. P. Gordon, and J. R.. Whinnery, “Focusirig of a
light beam of Gaussian field distribution in continuous and
periodic lens-like media, ” Proc. IEEE, vol. 53, pp. 12%136,
February 1965.
J. Hirano and Y. Fukatsu, “Stability of a Iigbt beam in a. beam
waveguide, ” Proc. IEEE, vol. 52, pp. 1284–1292, November
1964.
J. R. Pierce, Theory and Design of Electron Beam, 2r,d e.d.
Princeton, N. J.: Van Nostrand! 1954.
D. Marcuse, “Propagation of hght rays through a lenwwave-
guide with curved axis, ” Bell Sys. Tech. J., vol. 4.3, pp. 741-7S4,
March 1964.
H. G. Unger, “Light beam propagation in curved schlieren
gu~es, ” AYch. Elekt. Uber4ragtwsg, vol. 19, pp. 189–198, April

D. Marcuse, ‘(Statistical treatment of light-ray propagation in
beam-waveguides, ” Bell Sys. Tech. J., vol. 4,4, pp. 2065--2082,
November 1965.
D. W. Berreman, “Growth of oscillations of a ray about the
irregular y wavy axis of a lens light guide, 7’ Bell Sys. Tech. J.,
vol. 44, pp. 2t17–2132, November 1965.

[19] H. E. Rowe, private communication, June, 1963.

Mode Conversion in Tapered Waveguides At

and Near Cutoff

C. C. H. TANG

Abstract—The coupling coefficient between the TEu mode and
the TM] I mode in taperecl circular waveguicles is derived, and at
cutoff frequency it tends to approach an infinity of the order of 0–1/4.
It is surprising to discover that the corresponding coupling coefficient

between the TE,o mode and the TMIz mode in tapered rectangular
waveguides approaches instead a zero of the order of O11~at cutoff
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frequency. Accordingly, for the modes concerned, the choice of using

circular or square waveguides as tapers for tramsitio,n at and near

cutoff frequency is significant in reducing mode conversion level. At

and near cutoff frequency a “synthesized” square taper is better in

that it is shorter than a “synthesized” circular taper for the same

mode conversion levels. On the other hand, for frequencies far away

from cutoff the choice is insignificant.

Design procedures for “synthesized” waveguide tapers at and

near cutoff are presented, and the results of measurements are in

agreement with the theoretical calculations.
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IivTRODucTION

M
ODE CONVERSION in a tapered waveguide

capable of multimode propagation had been

analyzed [1 ]– [3 ] previously, but these analyses

treated only the cases where the converted modes are

also far away from cutoff, as the converting or exciting

mode is. The present paper treats the case where the

converted mode is at and near cutoff. The basic ap-

proach of the problem is the same as that shown in

Tang [3], but the coupling coefficient between the con-

verting mode and the converted mode has to be in a

general form appropriate for all cases including at, near,

and far away from cutoff.

Instead of treating the general problem of mode

conversion at and near cutoff in tapered multimode

waveguides, we shall study a specific example for pur-

poses of illustration. The waveguide taper changing

from a radius a, to radius a, in length 1 is shown in Fig. 1.

Fig. 1. A circular waveguide taper,

Assuming first that the dominant TE1l mode alone is

excited in a multimode circular waveguide of radius al,

we want to know what and how strong are the converted

modes in the waveguide of radius as, provided the taper-

ing is gentle. Calculation shows that the first few modes

possible for propagation in a multimode waveguide

taper appear in the following order for increasing radius:

TEII, TMOI, TEZ1, TM1l and TEO1, TES1, TMZ1, TEII,

TEIz, TMoz, TMw TE,l, TEw TM1.2 and TE02, etc. If

the excitation is TE1l mode alone and the taper is axially

straight and circularly symmetric, we can show by

means of the orthogonality relation that the only con-

verted modes will be of the TMln or (and) TE1. type,

depending on the actual size of the waveguide taper

used. These converted modes will be present in the fol-

lowing order as the taper radius a increases: TMI1, TEIZ,

T&flz, TE1~, TMIS, etc. For simplicity we shall assume

that the waveguide size is such that the only possible

converted mode is the TM1l mode. In the next section

the coupling coefficient between the TE1l mode and the

TMII mode of circular waveguides will be briefly de-

rived; in addition, the corresponding coupling coeff-

icient between the TEIO mode and the TMIZ mode of

rectangular waveguides will be derived also. It will be

shown that at and near cutoff frequency the choice of

using circular or rectangular waveguides as tapers is

significant in reducing mode conversion level.

FORMULATION

The coupling coefficient between the TEI1 mode and

the TMI1 mode in circular waveguide can be obtained

by converting Maxwell’s equations with appropriate

boundary conditions into generalized telegraphist’s

equations as shown by Schelkunoff [4]. The field con-

figuration of the TEu and TM1l modes at any cross sec-

tion in circular waveguides can be represented by

B
E, = — V(z) JI(jOp) sin O + ZV(z)~/(qp) sin O

PP

27.
Ee = B~(Z)JI’(@) COSd + — ~(Z)~I(qP) COSd

!lP

Bq .
E. = j — I(z) Jl(qp) sin O

UE

B_
Ho = - BI(z).J<(pp) Cos e – — I(z) Jl(qp) Cos o

4?P

B
11~ = — I(z) JI(#p) sin 0 + 177(z) J~(qp) sin 0

PP

where

s{B–2 = a
o ‘J12’P’’)12+[%I}’””

= j J12(PP)PdP,

Jl(qp) 2
~.z =

]}
~“{[J12(qP)]2 + [y , P~P

o

Pa

—— J J12(qp)p dp,
o

(1)

(2)

and

p(z) = ~(~(,+11 is the first root of J<),

q(z) = (~,, is the first root JI).

Prime (’) denotes the derivative with respect to its argu-

ment, and barred letters denote quantities related to

TM mode. The boundary condition along the tapered

section is, at p =a,

E,(a, 2) = – E,(a, 2) ~ . (3)

Substituting (1) into Maxwell’s equations in cylindrical

coordinates with due care exercised on differentiation

processes because of the boundary condition along the

tapered section, and performing the integration from

p = O to p =a and from 8 = O to 6 = 27r on these equations
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with appropriate normalizing factors and weighting dA

functions, we obtain the following differential equations
dz -

– ~(z)A + j-(z)x

in telegraphist’s form:
d~

dI _ y 1 da 2 1 da_ — – – ‘j(z) z-j-(z)A
~v+—L _ —1+——————I dz –

dz = jti,u k112 – 1 a dz (,4112– 1)’/’ a dz

dV 1 1 da
where

dz =
–j@pI– ——— ——v

kll~ – 1 a ds

[

1 112 1 da

f(z) = g
1z (A3II2 – 1) ;- i;

(9)

d? 1 da_

z=
–juE7+; zI

is the coupling coefficient between the TE.11 and ThIll

forward waves. Substituting (7) into (9), we obtain the
d~ 2 1 da

&:; T-- (4) general coupling coefficient in the following explicit

ZX–jue (hl/ – 1)1/’ a dz

‘(z’=[i~=:i);~)’’l’”+~

235

(8)

1 1 da
—

(k,,’ – 1)’/’

[(

kll’&2

)(

lill%? 114“z
az — ———

)1

a’ — ——
~T2 h?

(10)

\vhere

For the lossless case,

From (4) we notice that the couplin:g of the TNI1l mode

due to the presence of the TE1l mode is of the voltage

type only, whereas the coupling of the TEI1 mode due

to the presence of the TLI1l mode is of the current type

only.

If m-e let A and R represent the amplitudes of the for-

ward and reflected waves, respectively, the following

equations are alwa>-s true:

I__
I=;Z(A– R), (6)7=7=(.4–R)

where

(7)

Substitution of (6) into (4) results in a new set of four

coupled differential equations in forward waves and

reflected waves. If! the taper is gentle, we can assume

reflections and multiple reflections to be negligibly

small, and obtain the follo~ving pair of coupled differen-

tial equations in forward-wave amplitudes:

where ko is the free-space wavelength. For frequencies

far a~ray from cutoff, (10) reduces to the simple form

1 1 da
f(z) = ———

(k,,’ – 1)1/2”; z “
(11)

For frequencies at cutoff we notice from (10) that there

is an apparent zero in the denominator, and the coo pling

coefficient appears to be infinite. On the other hand,

(10) is obviously integrable in the cutoff region along

the taper since the zero in the denominator is of the

order of 01/4.

From the point of view of reducing reflections and

mode conversions, tapers should be designed with pro-

files having zero derivatives at the ends. The stipulation

of zero slope at the ends of the taper also makes it possi-

ble to utilize the results presented in Tang [3], namely,

(29), which is the solution of (8) here, and Fig,, 2 in

that reference. A choice of appropriate n and pl from

Fig. 2 of Tang [31 for a prescribed mode conversion

level, together with the following pair of parametric

equations, should give us the proper profile of the de-

sired “optimum” taper:

i.e.,

Joz,dzq’(2e)dp,

1

(k,,’ – 1)’/’ 1:[(a2-%)iJ%

(12)

(12’)
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and

i.e.,

where C. is a constant to be determined by the bound-

ary conditions: at

a=al, p =0, and a=aj, p=pl. (14)

Equations (12’) and (13’) have to be integrated numeri-

cally.

we now turn to a brief derivation of the coupling

coefficient between the TEIO mode and the TMH. mode

of rectangular or square waveguides. These two modes

are the counterparts of the TEn and TMH modes in

circular waveguides, and therefore a detailed study of

the coupling coefficient between these two modes in

rectangular or square waveguide may throw some new

light on the problem of mode conversion at cutoff. The

field configuration of the TEIO and TM1, modes at any

rectangular cross section, as shown in Fig. 2, can be

represented by

27ry
H. = – CI(Z) Cos ~ + CI(Z) Cos ‘H Cos ~

——

a a

b __ TX 27ry
Hv = ~ CI(Z) sin — sin ~

a

b_ 21ry
E% = ~ CV(Z) sinr~ sin ~

a

‘inn(z)= K32+(%)’=’JZ)

(15)

(16)

(17)

Epfpf=J~q>x
z

al I ---4 L--.2----4
Fig. 2. A rectangular waveguide taper.

The boundary condition along the tapered section is

Substituting (15) into Maxwell’s equations in rectangu-

lar coordinates with due care exercised on differentia-

tion processes, and performing the integration over the

cross section on these equations with appropriate nor-

malizing factors, we obtain the following equations:

dI

( )

?v+ ;~–;;:I

z=–jup

dV

(

1 dC llda

)

C 1 db _

dz =
–jw~I– ——–——— V+ ZXZV

C dz 2 adz

1 _ db
—— aCC ~ I

2

where

I’2(z) = klo’(z) – W2qJ, and P2(z) = kljz(z) — W2W. (20)

Note that in (19)

as expected. Inspection of (19) reveals that the nature

of the coupling mechanism is just the reverse of that of

the circular waveguide case; i.e., the coupling of the

TM12 mode due to the presence of the TEIO mode is of

the current type only, whereas the coupling of the TE1o

mode due to the presence of the TM12 mode is of the

voltage type only.

For gentle tapers reflections can be neglected and (19)

can be converted into a pair of coupled equations in for-

ward waves F and ~ as

dF
– – r(z)F + f’(z)~

dz

d~
– ~(z)~ – (’(z)F

z=
(22)
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where

(23)

and

Note that ~’ is proportional to db/dz only, and inde-

pendent of da/dz for coupling between the TE1o mode

and the TMM mode. Combining (23), (24), and (17), we

obtain the coupling coefficient explicitly as

j-’(z) =
(4afi2)12{[1-(2)’l

. ~ _ (4a’+ b2)A02- ‘/4 1 db

[ (2ab)2 -1}
– . (25)

~ dz

For a square guide a = b, (25) reduces to

“=(z)= iii{[b’-(+)’l

“[b’-(%?l}l’’+;” ‘2’)

For frequencies far away from cutoff, (25) and (26) re-

duce to, respectively,

and

(27)

(28)

At cutoff it is clear from (25) or (26) that the coupling

coefficient ~’ vanishes to a zero of the order of 0114 in

contrast to the circular waveguide case where the cou-

pling coefficient ~ of (10) at cutoff becomes infinite of

the order of 0- 1/4.

From a purely theoretical point of view, we can con-

clude now that in order to reduce the mode conversion

levels in tapers near and at cutoff frequency region, it is

more desirable to use for the modes concerned rectangu-

lar or square waveguides than circular waveguides. On

the other hand, when the tapers are for frequencies far

away from cutoff, the choice between the circular wave-

guide and the rectangular waveguide becomes insignifi-

cant as evidenced by the fact that the magnitude of ~’

of (28) is about the same as that of ~ of (1 1).

DESIGNS -ANII EXPERIMENTS

The following theoretical requirements and experi-

mental setup are given: A pure TE,1o mode is success-

fully excited in a square (1.79 in) waveguide, and the

receiving end waveguide is required to be circular

(2.812 in ID) ~~Design a transition section such that the

conversion of the Thlll mode is at least 43 dB less than

the TE1l mode in the circular waveguide \rithin the fre-

quency range from 5725 Me/s to 6425 Me/s.

The required transition section is square (1.79 in) at

one end and circular (2.812 in ID) at the other end. De-

pending upon the choice of design scheme, the major

part of the transition section can be in either circular

waveguide taper or square waveguide taper. We shall

design first a circular taper and then a square taper for

purposes of comparison.

Circular Tapers

Calculation shows that the TNl~~ mode at j= 6425

Me/s and ~= 5925 lbIc/s does not propagate until the

diameter of the circular waveguide is 2.242 ‘in and 2.432

in, respectively. Accordingly, the circular taper should

be designed at f= 6425 nlc/s with 2al = 2.242 in and

2az = 2.812 in. To complete the transition section from

1.79 in square to 2.812 in ID circular, we need another

section with 1.79 in square at one end to 2.242 in ID

circular at the other end in addition to the 2al=2.242 in

to 2aZ=2.812 in circular taper. Since the Tl\’fll mode at

f= 6425 Me/s cannot propagate in the section from 1.79

in square to 2.242 in I D circular, the design of such a

section does not involve the TMu mode conversion but

does affect the reflection level of the dominant mode.

To simplify the fabrication processes, t’his section can

be made from a mandrel formed simply by cutting a

linear conical taper with 2al = 2.242 in and 2az

= <2x 1.79 in and slicing off four flat sides witl-1 the

slope (2.242–1.79 in)21 such that one end is a circle of

2.242 in diameter and the other end is a square of 1.79

in side. The dominant mode reflection from this section

of length Z= 12 in is about —45 dB by measurements.

The exact profile of the circular taper from 2al = ‘;!. 242

in to 2aj = 2.812 in is obtained by solving the pair of

parametric equations (1 2‘) and (1 3‘). The choice of

appropriate n and PI from Fig. 2 of Tang [3] deserves

some detailed discussion. From Tang [3] we under-

stand that the parameter pl for a gentle taper its ap-

proximately the integral (over the Iengtlh of the ti~lper)

of one half the difference of the phase constants 01[ the

two modes involved in conversion. For frequencies far

away from cutoff, P1 increases for decreasing freq uen-

cies, and accordingly a taper is always designed fc,r the

highest frequency in the band so that its performance

at lower frequencies is always better than the pre-

scribed. For frequencies at and near cutoff, however, P1

decreases for decreasing frequencies, and therefore mode

conversion increases with decreasing frequencies, Our

present prescription also requires that the taper be de-

signed for the highest frequency in the bandl, and conse-

quently we have to know approximately the value of PI

for the lowest frequency in the band. On the other hand,

we cannot obtain the value of pl for the lowest frequency

until the required profile is provided. Clearly, we have

to employ some ‘{cut-and-try” processes in choosing the

values of n and pl for the highest frequency at a mode
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conversion level much less than the prescribed level.

With the chosen values of n and PI we can obtain the

profile and therefore the approximate value of pl for the

lowest frequency. If this value of p, for the lowest fre-

quency meets the prescribed requirements, we have

succeeded in designing the taper. If not, we have to try

another set of values for n and pl for the highest fre-

quency. By choosing n = 3 and PI= 15.5 for the highest

frequency at about – 58 dB mode conversion, Me suc-

ceed in obtaining a taper having about —43 dB mode

conversion at the lowest frequency. The length of the

taper by this “synthesis” method turns out to be about

20 in, and the profile is monotonically increasing in a

‘(sophisticated” manner.

For purposes of experimental comparison, another

circular taper from 2al = 2.242 in to 2a2 = 2.812 in is

fabricated with the following “simple” profile:

()7rz
a=aI+(a2—aJSin2 ‘—

21
(29)

where 1 is arbitrarily taken to be 23 in. hTote this profile

also has zero initial derivative only at the design fre-

quency (i.e., the highest frequency in the band).

The results of the measurements by Klinger’s

method [5] are tabulated in Table I. Obviously, the 23-

in taper of “simple” profile does not meet the require-

ment by about 14 dB in the high-frequent]- region. The

fact that the measured mode conversion levels of the

‘(synthesized)’ circular taper are flat over the band is

mainly due to the accuracy limit of the measuring equip-

ment.

TABLE I

TMn MODE CONVEMION LEVEL IN DB

Frequency
(Me/s)

5925
6000
6100
6200
6300
6400
6425

Sqf[a~e Tapers

20 in Circular
Taper by

“synteop “

– 43
–43
–43
–43
–43
–43
–43

23 in Circular
Taper

Aaa sin’ (7r/2 z/lJ

– 43
– 43
–43
–43
–41
–33
–29

11 in “Linear”
Square Taper

– %3
–42
–43
– 43
–43
–4.1
–41

Since (26) shows that the coupling coefficient at cutoff

frequency is zero and mode conversion is very small near

cutoff, it seems unnecessary to utilize the same “synthe-

sis” method used earlier to obtain a “sophisticated”

profile. In addition, the fabrication of a square taper

with “sophisticated” profile is much more difficult. For

purposes of experimental comparison with the circular

tapers just studied, we design the simplest square taper

with a linear slope. In order to reduce reflections with a

taper of zero end derivatives, a short parabolic “filet”

is fitted at each end, and the square taper (1.79 in to

2.~12 in) has the following profile with an arbitrarily

chosen length of 15 in:

1 from O to 1 in b = 1.79 + 0.03785z’

1 from 1 to 13 in b = 1.79 + 0.03785(2z – 1)

1 from 13 to 15 in

[ 1
6 = 1.79+ 1.022 1 –: (z – 15)’ . (30)

Note that the ‘~effective length” of the taper is only

about 11 in, since the mode conversion at 6425 hlc/s

does not start until b becomes larger than 2.0552 in. To

complete the required taper we need another transition

from 2.812 in square to 2.812 in ID circular. This transi-

tion can be made from a mandrel formed by cutting a

linear conical taper with 2al = 2.812 in and 2a, = ~~

X2.812 in, and slicing off four flat sides parallel to the

axis such that one end is a circle of 2.812 in ID and the

other end is a 2.812 in square. The dominant mode re-

flections frolm such a transition of 12 in length are mea-

sured to be less than —45 dB. Since the sides of this

transition are parallel to the axis, the mode conversion

due to this transition should be zero, according to (26)

or (10), since da/dz = db/dz = O. Because of the gradual

flaring at the circular part of corners, this transition

may yield comparatively small or negligible TM1l mode

conversion. The results of measurements are also tabu-

lated in Table 1. Comparison shows that the “un-

sophisticated “ “linear” square taper is indeed a strong

contender to the ‘(synthesized” circular taper. If the

square taper were ‘{synthesized” its mode conversion

would be lower than that of the ‘synthesized 7’ circular

taper of the same length.

CONCLUSIONS

The coupling coefficient between the TE1l mode and

the TI 111 mode in circular waveguide is derived, and at

cutoff frequency it tends to approach an infinity of the

order of 0–114. The corresponding coupling coefficient

between the TEIO mode and the Thllz mode in rectangu-

lar waveguide is also derived, and at cutoff frequency it

tends to approach a zero of the order of 0114. Accord-

ingly, for the modes concerned it is theoretically advan-

tageous to design square tapers at and near cutoff fre-

quency in order to reduce mode conversion levels in

shorter lengths. On the other hand, the fabrication of a

square taper with ‘sophisticated” profile is much more

difficult than the fabrication of a circular taper. Design

procedures for a circular taper at and near cutoff are

shown, and the experimental results are in agreement

with the theoretical calculations. For frequency far

away from cutoff, the choice between the circular taper

and the rectangular taper is insignificant,

In circular waveguide tapers the coupling of the

Tllll mode due to the presence of the TE1l mode is of

the voltage type, whereas in rectangular or square wave-

guide tapers the coupling of the Tlkllz mode due to the

presence of the TEIO mode is of the current type. The
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difference between the coupling mechanisms in these

two cases could be responsible for the drastically dif-

ferent behaviors at the cutoff, but no convincing phys-

ical interpretation can yet be offered.
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Computation of the Performance of the Abrupt

Junction Varactor Doubler

ALFRED ~. GRAYZEL, MEMBER, IEEE

Absfracf—A computational procedure is given for the solution of

the large signal abrupt junction varactor doulbler as the input fre-

quency is varied, given the available power clf the source and the

source and load impedances. The basic equations are presented in a
convenient form. The steps in the procedure are then outlined, and
an example is given to demonstrate their use.

SYMBOLS

Eff = efficiency of doubler

E,= Th6venin equivalent voltage of input source

ml= normalized elastance coefficient at input

frequency

WZ = normalized elastance coefficient at output

frequency

P= parameter defined by (S)

Pav = avail:tble power of source

Pi. = input power to doubler

P norm = normalization power= ( V,y+q5) 2/Rs

Qmi. = charge on varactor when S(t)= O

g+= charge on varactor due to contact potential

R,, = real part of Th&enin equivalent source im-

pedance

i?%= real part of (Z,+ Rs+S,/2jIJ)/RS

RS = series resistance of the varactor

SO= average value of S(f)

S(t) = instantaneous value of elastance

S,,,,,X = value of S(t) at breakdown

S~,. = minimum value of S(t)
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VB = breakdown voltage

170= direct voltage across varactor

VSWR = voltage standing wave ratio

X,= imaginary part of Th6venin equiva lent

source impedance

y Q wz2(c0c/u)cos e

ZW = impedance looking into terminals bb’ (Fi~. 1)

Z,,, = voltage across diode at input frequency di-

vided by current at input frequency

22= load impedance

u = input frequency

me= cutoff frequency of varactor = S,,,.JRS

O= phase angle by which input current leads

output current

paa, = reflection coefficient at terminals aa’ (Fig. 4)

pbb, = reflection coefficient at terminals bb’ (Fig. 4)

@= contact potential

IJJA= angle at which S(f) is a maxirnulm

~B = angle at which S(t) is a minimum

INTRODCTCTION

H

~ AVING DIZSIGNED a doubler circuit quite

~ often, one would like to know its efficiency and

output power as the input frequency is varied

about the design frequency. In this paper we therefore

consider the following problem: Given an abrupt junc-

tion vat-actor doubler circuit whose load and source

impedances have already been chosen, driven by a sirlus-

oidal source whose frequency we are free to vary ;and

whose available power is a known function of frequency,

what is the output power and efficiency as a function
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